Winding and unwinding must be handled with consideration given to the speed of the winder,  the control processing times and the implementation of that control scheme into the overall machine design, to achieve greater efficiency.

Electronically controlled AC drives offer an efficient means of executing the widest range of winding tasks. Today, these drives are already an integral part of most modern production equipment and systems, so  why not use the configuring/engineering tools already available to implement winder tasks? The engineers at Siemens asked the same question, and the answer was a standard "winder" application that has now been designed into the current generation of drives. This standard application can be used to quickly and flexibly address demanding tasks on a new design or retrofit of a printing press, converting machine, packaging line, wireforming station, coiled metal, textile or other processing line.

Implementing the winder application directly into the drive system has a basic advantage: When compared to an external controller, namely, it relieves the higher-level, open-loop control of arithmetic tasks. As a result, engineering resources are available for other tasks. A control system with a lower performance and price point can also be used. In any case, a high proportion of the communication load between the control system and the drive is eliminated. As a result, the associated faster response and cycle times can be more quickly and precisely realized in an open-loop control or closed-loop control, which increases the productivity and/or the winding quality, depending on the particular application.

Winding with or without Tension Sensors

A winder solution generally comprises a winder drive, web and tension sensors. The task is to wind or unwind the web with a defined tension, whereby the roll diameter continually changes. The electronic drive system calculates the actual diameter using several system variables to control the motor speed and keep the tension of the material web constant. To achieve this, the velocity of the web and the winder shaft speed must be known at all times. If the highest quality tension regulation is needed, severe demands are placed on the performance and tension precision, so it makes sense to use additional sensors.  

Closed-loop Control Technique – When High Precision is a Must

Open-loop tension control

For tension control with dancer roll and speed correction, the web is routed over a dancer roll. The dancer roll attempts to deflect the material with a defined force. This deflection is detected using an analog sensor or encoder. The dancer roll position controller, in tandem with the drive speed controller, corrects the position actual value of the dancer roll to track the position setpoint (for example, the dancer roll center position). To do this, the position controller enters a velocity correction setpoint into the speed controller. When dancer rolls with pneumatic loading are used, dancer tension can be regulated via the taper tension characteristic feature.

Dancer position control

For the closed-loop tension control with load cell using torque limits, the material tension is directly sensed using the tension transducer and is appropriately controlled. Similar to the open-loop tension control, the speed controller in the drive operates in a saturated state, meaning that the drive is at one of the two torque limits and is controlled using these limits. The correction value from the tension controller acts on these torque limits.

Tension control with load cell

For tension control with load cell and speed correction, the tension is detected using a load cell and is fed to the tension controller as actual value. However, in this case, the tension controller output acts as a velocity correction value on the speed controller. Accelerating torque, friction torque and tension force are supplied as a feed-forward.

Friction Compensation

Friction losses can be simply compensated using a function with ten interpolation points.


In the jog mode, either a path velocity setpoint can be directly entered via the interface or one of two fixed jog setpoints can be selected.

Web Break Detection

The web break detection is active when the tension control is switched on and, depending on the control type, is configured in various ways. After a web break, the diameter computer is stopped, tension operation is disabled and the tension controller enable is withdrawn.

The standard application described here is designed for common-center winders with a central shaft to drive the roll. From a control perspective, this is more challenging than a surface winder, but is the more effective of the two, as it is a much simpler version, at least from a mechanical perspective.

The standard application supports various control techniques, including open-loop torque control, direct tension control with dancer position control and speed correction, as well as tension force control with torque limiting – respectively with speed correction (see sidebar). This means that the standard application addresses approximately 90 percent of all winder applications found in the industry today.

Siemens drive specialists have formulated a DCC for winder applications. Using this programming language, relevant, multi-instance capable function blocks can be easily interlinked by simply dragging them from a standard library and dropping them into the chart. Users need only to parameterize the specific units such as the material velocity and acceleration, then define the closed-loop control technique. This standard application then calculates all the signals required to control the winder axis, then integrates the specific winder functions required for the job.

Diameter Calculator

This function is used to convert the web velocity into the corresponding motor speed. The actual diameter is obtained from the ratio of the web setpoint velocity to actual speed.

Taper Tension Characteristic

This is used if the material tension should decrease as the diameter of the roll being wound increases. The taper tension characteristic is dependent on the actual diameter of the roll.

Controller Adaptation

Using this function, the tension controller gain can be adapted as a function of the diameter, plus the gain of the speed controller in the drive can be adapted as a function in moment of inertia on the roll being wound. This means even large build-up ratios can be easily accommodated. 

Acceleration Feed-Forward

Quickly responding to velocity changes, a compensation torque can be switched to the drive while accelerating and decelerating the material. This compensation torque comprises the variable and constant moments of inertia. This prevents tension dips or excessive tension when the velocity changes. Acceleration feed-forward is usually required for open-loop tension control, but also for tension control using a load cell.


Siemens Industry, Inc.

Drive Technologies – Motion Control (Production Machines)

 (847) 640-1595;